Understanding the timescales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere

نویسندگان

  • Kevin M. Grise
  • Lorenzo M. Polvani
چکیده

This study examines the time scales of the Southern Hemisphere (SH) tropospheric circulation response to increasing atmospheric CO2 concentrations in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to an abrupt quadrupling of atmospheric CO2, the midlatitude jet stream and poleward edge of the Hadley circulation shift poleward on the time scale of the rising global-mean surface temperature during the summer and fall seasons but on a much more rapid time scale during the winter and spring seasons. The seasonally varying time scales of the SH circulation response are closely tied to the meridional temperature gradient in the upper troposphere–lower stratosphere and, in particular, to temperatures in the SH polar lower stratosphere. During summer and fall, SH polar lower-stratospheric temperatures cool on the time scale of warming global surface temperatures, as the lifting of the tropopause height with tropospheric warming is associated with cooling at lower-stratospheric levels. However, during winter and spring, SH polar lower-stratospheric temperatures cool primarily from fast time-scale radiative processes, contributing to the faster time-scale circulation response during these seasons. The poleward edge of the SH subtropical dry zone shifts poleward on the time scale of the rising globalmean surface temperature during all seasons in response to an abrupt quadrupling of atmospheric CO2. The dry zone edge initially follows the poleward shift in the Hadley cell edge but is then augmented by the action of eddymoisture fluxes in a warming climate. Consequently, with increasing atmospheric CO2 concentrations, key features of the tropospheric circulation response could emerge sooner than features more closely tied to rising global temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Role of Radiative Processes in Stratosphere–Troposphere Coupling

Climate change in the Southern Hemisphere (SH) polar stratosphere is associated with substantial changes in the atmospheric circulation that extend to the earth’s surface. The mechanisms that drive the changes in the SH troposphere are not fully understood, but most previous hypotheses have focused on the role of atmospheric dynamics rather than that of radiation. This study quantifies the radi...

متن کامل

Stratospheric variability and tropospheric annular‐mode timescales

[1] Climate models tend to exhibit much too persistent Southern Annular Mode (SAM) circulation anomalies in summer, compared to observations. Theoretical arguments suggest this bias may lead to an overly strong model response to anthropogenic forcing during this season, which is of interest since the largest observed changes in Southern Hemisphere high‐latitude climate over the last few decades...

متن کامل

Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previou...

متن کامل

Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO2 forcings

[1] We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m 2 due to the increase in tropospheric ozone since preindustrial ti...

متن کامل

The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing

In Coupled Model Intercomparison Project Phase 5 (CMIP5) models, the zonal-mean tropospheric circulation shifts robustly poleward in the Southern Hemisphere extratropics in response to increased atmospheric CO2 concentrations. However, in the Northern Hemisphere (NH) extratropics, the circulation response to CO2 is largely absent in the zonal mean and is instead characterized by complex regiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017